
Public

SMART CONTRACT AUDIT REPORT

for

Juicebox Protocol (v2)

Prepared By: Patrick Lou

PeckShield
April 8, 2022

1/22 PeckShield Audit Report #: 2022-055

contact@peckshield.com


Public

Document Properties

Client Juicebox
Title Smart Contract Audit Report
Target Juicebox
Version 1.0
Author Xuxian Jiang
Auditors Xiaotao Wu, Patrick Lou, Xuxian Jiang
Reviewed by Patrick Lou
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 April 8, 2022 Xuxian Jiang Final Release
1.0-rc February 19, 2022 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Patrick Lou
Phone +86 183 5897 7782
Email contact@peckshield.com

2/22 PeckShield Audit Report #: 2022-055



Public

Contents

1 Introduction 4
1.1 About Juicebox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 About PeckShield . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Findings 9
2.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Key Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Detailed Results 11
3.1 Authorization Consistency in Terminal Management . . . . . . . . . . . . . . . . . . 11
3.2 Improved Validation of JBSplitsStore::set() . . . . . . . . . . . . . . . . . . . . . . . 13
3.3 Improved Reentrancy Protection in JBETHPaymentTerminal . . . . . . . . . . . . . 15
3.4 Trust Issue of Admin Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.5 Improper Token Removal Logic in changeFor() . . . . . . . . . . . . . . . . . . . . . 17

4 Conclusion 20

References 21

3/22 PeckShield Audit Report #: 2022-055



Public

1 | Introduction

Given the opportunity to review the design document and related source code of the Juicebox protocol,
we outline in the report our systematic approach to evaluate potential security issues in the smart
contract implementation, expose possible semantic inconsistencies between smart contract code and
design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About Juicebox

The Juicebox protocol is a programmable treasury, which can be used by DeFi projects to to configure
how its tokens should be minted when it receives money, and under what conditions funds can be
distributed to preprogrammed addresses or claimed by its community. These rules can evolve over
funding cycles, allowing people to bootstrap open-ended projects and add structure, constraints, and
incentives over time as needed. The protocol is light enough for a group of friends, yet powerful
enough for a global network of users sharing thousands of ETH. The basic information of audited
contracts is as follows:

Table 1.1: Basic Information of Juicebox

Item Description
Name Juicebox

Website https://www.juicebox.money/
Type Smart Contract

Language Solidity
Audit Method Whitebox

Latest Audit Report April 8, 2022

In the following, we show the Git repository of reviewed files and the commit hash value used in
this audit:

4/22 PeckShield Audit Report #: 2022-055



Public

• https://github.com/jbx-protocol/juice-contracts-v2.git (16d1ba9)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

• https://github.com/jbx-protocol/juice-contracts-v2.git (a9ad156)

1.2 About PeckShield

PeckShield Inc. [11] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on OWASP Risk Rating
Methodology [10]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact, and can be accordingly classified
into four categories, i.e., Critical, High, Medium, Low shown in Table 1.2.

5/22 PeckShield Audit Report #: 2022-055

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com


Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/22 PeckShield Audit Report #: 2022-055



Public

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further
deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [9], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/22 PeckShield Audit Report #: 2022-055



Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logics Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/22 PeckShield Audit Report #: 2022-055



Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the design and implementation of the Juicebox

protocol smart contracts. During the first phase of our audit, we study the smart contract source code
and run our in-house static code analyzer through the codebase. The purpose here is to statically
identify known coding bugs, and then manually verify (reject or confirm) issues reported by our
tool. We further manually review business logics, examine system operations, and place DeFi-related
aspects under scrutiny to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 2

Low 3

Informational 0

Total 5

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

9/22 PeckShield Audit Report #: 2022-055



Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can
be improved by resolving the identified issues (shown in Table 2.1), including 2 medium-severity
vulnerabilities and 3 low-severity vulnerabilities.

Table 2.1: Key Audit Findings

ID Severity Title Category Status
PVE-001 Low Authorization Consistency in Terminal

Management
Business Logic Resolved

PVE-002 Low Improved Validation of JBSplits-
Store::set()

Coding Practices Resolved

PVE-003 Low Improved Reentrancy Protection in
JBETHPaymentTerminal

Time And State Resolved

PVE-004 Medium Trust Issue of Admin Keys Security Features Mitigated
PVE-005 Medium Improper Token Removal Logic in

changeFor()
Business Logic Resolved

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

10/22 PeckShield Audit Report #: 2022-055



Public

3 | Detailed Results

3.1 Authorization Consistency in Terminal Management

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: JBDirectory

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The Juicebox protocol has a built-in JBDirectory contract to keep track of the terminals through
which each project is currently accepting funds. While reviewing the logic to manage each project’s
terminals, we notice the current implementation may be improved.

To elaborate, we show below the related addTerminalsOf()/removeTerminalOf() functions. As
the names indicate, they are proposed to add or remove a terminal from the given project. Note
both functions require proper authorization. It comes to our attention that the first function re-
quires requirePermissionAllowingOverride(projects.ownerOf(_projectId), _projectId, JBOperations.

ADD_TERMINALS, msg.sender == address(controllerOf[_projectId])) (lines 233-238) while the second
function requires requirePermission(projects.ownerOf(_projectId), _projectId, JBOperations.REMOVE_TERMINAL

) (line 263). In other words, the addition of a new terminal will require the authorization of the project
owner or controller. However, the terminal removal needs to be performed by the project owner.
For consistency, the project controller should also be authorized to remove a terminal. Our analysis
shows that the setPrimaryTerminalOf() function shares the same issue.

230 function addTerminalsOf(uint256 _projectId , IJBTerminal [] calldata _terminals)
231 external
232 override
233 requirePermissionAllowingOverride(
234 projects.ownerOf(_projectId),
235 _projectId ,
236 JBOperations.ADD_TERMINALS ,
237 msg.sender == address(controllerOf[_projectId ])

11/22 PeckShield Audit Report #: 2022-055



Public

238 )
239 {
240 for (uint256 _i = 0; _i < _terminals.length; _i++) {
241 // Can’t be the zero address.
242 if (_terminals[_i] == IJBTerminal(address (0))) {
243 revert ADD_TERMINAL_ZERO_ADDRESS ();
244 }
245
246 _addTerminalIfNeeded(_projectId , _terminals[_i]);
247 }
248 }

Listing 3.1: JBDirectory::addTerminalsOf()

260 function removeTerminalOf(uint256 _projectId , IJBTerminal _terminal)
261 external
262 override
263 requirePermission(projects.ownerOf(_projectId), _projectId , JBOperations.

REMOVE_TERMINAL)
264 {
265 // Get a reference to the terminals of the project.
266 IJBTerminal [] memory _terminals = _terminalsOf[_projectId ];
267
268 // Delete the stored terminals for the project.
269 delete _terminalsOf[_projectId ];
270
271 // Repopulate the stored terminals for the project , omitting the one being deleted.
272 for (uint256 _i; _i < _terminals.length; _i++)
273 // Don’t include the terminal being deleted.
274 if (_terminals[_i] != _terminal) _terminalsOf[_projectId ].push(_terminals[_i]);
275
276 // If the terminal that is being removed is the primary terminal for the token ,

delete it from being primary terminal.
277 if (_primaryTerminalOf[_projectId ][ _terminal.token ()] == _terminal)
278 delete _primaryTerminalOf[_projectId ][ _terminal.token()];
279
280 emit RemoveTerminal(_projectId , _terminal , msg.sender);
281 }

Listing 3.2: JBDirectory::removeTerminalOf()

Recommendation Properly ensure the authorization consistency among the above functions.

Status This issue has been resolved as the above functions are refactored into other functions
which do not exhibit the inconsistency.

12/22 PeckShield Audit Report #: 2022-055



Public

3.2 Improved Validation of JBSplitsStore::set()

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: JBSplitsStore

• Category: Coding Practices [6]

• CWE subcategory: CWE-1041 [1]

Description

To efficiently manage the fund distributions, the Juicebox protocol has a built-in JBSplitsStore con-
tract that uses a JBSplit data structure to split up payout distributions. While reviewing the current
logic to set up a project’s payout splits, the current implementation can be improved to better validate
the given project.

In particular, the logic is implemented in the following set() function, which takes a number of
split-related information and validates them for further processing. It comes to our attention that
the given _projectId is verified using the following statement, i.e., _splits[_i].projectId > type(

uint56).max, which can be further improved with the _splits[_i].projectId > projects.count(). The
improvement allows for rigorous validation on the (untrusted) user input.

145 f unc t i on s e t (
146 uint256 _pro j e c t I d ,
147 uint256 _domain ,
148 uint256 _group ,
149 JBSp l i t [ ] memory _sp l i t s
150 )
151 ex te rna l
152 o v e r r i d e
153 r e q u i r e P e rm i s s i o nA l l ow i n gOv e r r i d e (
154 p r o j e c t s . ownerOf ( _p ro j e c t I d ) ,
155 _pro j e c t I d ,
156 JBOperat ions . SET_SPLITS ,
157 address ( d i r e c t o r y . c o n t r o l l e r O f ( _p ro j e c t I d ) ) == msg . sender
158 )
159 {
160 // Get a reference to the project ’s current splits.
161 JBSp l i t [ ] memory _cu r r e n t S p l i t s = _getS t ruc t sFo r ( _pro j e c t I d , _domain , _group ) ;
162
163 // Check to see if all locked splits are included.
164 f o r ( uint256 _i = 0 ; _i < _cu r r e n t S p l i t s . l ength ; _i++) {
165 // If not locked , continue.
166 i f ( block . timestamp >= _cu r r e n t S p l i t s [ _i ] . l o c k e dUn t i l ) cont inue ;
167
168 // Keep a reference to whether or not the locked split being iterated on is

included.
169 bool _inc ludesLocked = f a l s e ;

13/22 PeckShield Audit Report #: 2022-055



Public

170
171 f o r ( uint256 _j = 0 ; _j < _ s p l i t s . l ength ; _j++) {
172 // Check for sameness.
173 i f (
174 _sp l i t s [ _j ] . p e r c en t == _cu r r e n t S p l i t s [ _i ] . p e r c en t &&
175 _sp l i t s [ _j ] . b e n e f i c i a r y == _cu r r e n t S p l i t s [ _i ] . b e n e f i c i a r y &&
176 _sp l i t s [ _j ] . a l l o c a t o r == _cu r r e n t S p l i t s [ _i ] . a l l o c a t o r &&
177 _sp l i t s [ _j ] . p r o j e c t I d == _cu r r e n t S p l i t s [ _i ] . p r o j e c t I d &&
178 // Allow lock extension.
179 _sp l i t s [ _j ] . l o c k e dUn t i l >= _cu r r e n t S p l i t s [ _i ] . l o c k e dUn t i l
180 ) _ inc ludesLocked = t rue ;
181 }
182
183 i f ( ! _ inc ludesLocked ) {
184 r e ve r t PREVIOUS_LOCKED_SPLITS_NOT_INCLUDED( ) ;
185 }
186 }
187
188 // Add up all the percents to make sure they cumulative are under 100%.
189 uint256 _percentTota l = 0 ;
190
191 f o r ( uint256 _i = 0 ; _i < _ s p l i t s . l ength ; _i++) {
192 // The percent should be greater than 0.
193 i f ( _ s p l i t s [ _i ] . p e r c e n t == 0) {
194 r e ve r t INVALID_SPLIT_PERCENT( ) ;
195 }
196 // ProjectId should be within a uint56
197 i f ( _ s p l i t s [ _i ] . p r o j e c t I d > type ( uint56 ) . max) {
198 r e ve r t INVALID_PROJECT_ID( ) ;
199 }
200
201 // The allocator and the beneficiary shouldn ’t both be the zero address.
202 i f (
203 _sp l i t s [ _i ] . a l l o c a t o r == I J B S p l i t A l l o c a t o r ( address (0 ) ) &&
204 _sp l i t s [ _i ] . b e n e f i c i a r y == address (0 )
205 ) {
206 r e ve r t ALLOCATOR_AND_BENEFICIARY_ZERO_ADDRESS( ) ;
207 }
208 . . .
209 }
210
211 // Set the new length of the splits.
212 _sp l i tCountOf [ _p ro j e c t I d ] [ _domain ] [ _group ] = _ s p l i t s . l ength ;
213 }

Listing 3.3: JBSplitsStore :: set ()

Recommendation Properly validate the given input to the above set() function.

Status This issue has been resolved as it is implemented for gas efficiency.

14/22 PeckShield Audit Report #: 2022-055



Public

3.3 Improved Reentrancy Protection in
JBETHPaymentTerminal

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: JBETHPaymentTerminal

• Category: Time and State [8]

• CWE subcategory: CWE-663 [3]

Description

A common coding best practice in Solidity is the adherence of checks-effects-interactions principle.
This principle is effective in mitigating a serious attack vector known as re-entrancy. Via this
particular attack vector, a malicious contract can be reentering a vulnerable contract in a nested
manner. Specifically, it first calls a function in the vulnerable contract, but before the first instance
of the function call is finished, second call can be arranged to re-enter the vulnerable contract by
invoking functions that should only be executed once. This attack was part of several most prominent
hacks in Ethereum history, including the DAO [13] exploit, and the recent Uniswap/Lendf.Me hack [12].

We notice there is an occasion where the reentrancy protection is not consistently enforced. Using
the JBETHPaymentTerminal contract as an example, the pay() function (see the code snippet below)
and addToBalanceOf() are not protected with the nonReentrant modifier while other functions are all
enforced with nonReentrant. For consistency and improved protection, any invocation of an external
contract requires extra care in avoiding the above re-entrancy. With that, we also suggest to add
reentrancy protection to the above two functions pay() and addToBalanceOf().

242 function pay(
243 uint256 _projectId ,
244 address _beneficiary ,
245 uint256 _minReturnedTokens ,
246 bool _preferClaimedTokens ,
247 string calldata _memo ,
248 bytes calldata _delegateMetadata
249 ) external payable override {
250 return
251 _pay(
252 msg.value ,
253 msg.sender ,
254 _projectId ,
255 _beneficiary ,
256 _minReturnedTokens ,
257 _preferClaimedTokens ,
258 _memo ,
259 _delegateMetadata
260 );

15/22 PeckShield Audit Report #: 2022-055



Public

261 }

Listing 3.4: JBETHPaymentTerminal::pay()

Recommendation Apply necessary reentrancy prevention by utilizing the nonReentrant modifier
to block possible re-entrancy.

Status This issue has been fixed in the following commit: 944561f.

3.4 Trust Issue of Admin Keys

• ID: PVE-004

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Multiple Contracts

• Category: Security Features [5]

• CWE subcategory: CWE-287 [2]

Description

In the Juicebox protocol, there is a privileged owner account that plays a critical role in governing and
regulating the system-wide operations (e.g., configure parameters, whitelist contracts, and migrate
protocols). It also has the privilege to regulate or govern the flow of assets within the protocol.

With great privilege comes great responsibility. Our analysis shows that the owner account is
indeed privileged. In the following, we show a representative privileged operation in the JBController

protocol.

702 f unc t i on mig ra t e ( uint256 _pro j e c t I d , I J BCo n t r o l l e r _to )
703 ex te rna l
704 r e q u i r e P e rm i s s i o n ( p r o j e c t s . ownerOf ( _p ro j e c t I d ) , _pro j e c t I d , JBOperat ions .

MIGRATE_CONTROLLER)
705 nonReent rant
706 {
707 // This controller must be the project ’s current controller.
708 i f ( d i r e c t o r y . c o n t r o l l e r O f ( _p ro j e c t I d ) != t h i s ) {
709 r e ve r t CALLER_NOT_CURRENT_CONTROLLER( ) ;
710 }

712 // Get a reference to the project ’s current funding cycle.
713 JBFundingCyc le memory _fund ingCyc l e = f und i n gCy c l e S t o r e . c u r r e n tO f ( _p ro j e c t I d ) ;

715 // Migration must be allowed
716 i f ( ! _fund ingCyc le . c o n t r o l l e rM i g r a t i o nA l l ow e d ( ) ) {
717 r e ve r t MIGRATION_NOT_ALLOWED() ;
718 }

720 // All reserved tokens must be minted before migrating.

16/22 PeckShield Audit Report #: 2022-055

https://github.com/jbx-protocol/juice-contracts-v2/pull/122/commits/944561f


Public

721 i f ( uint256 ( _processedTokenTrackerOf [ _p ro j e c t I d ] ) != tokenS to r e . t o t a l Supp l yO f (
_p ro j e c t I d ) )

722 _d i s t r i bu t eRe s e r v edToken sO f ( _pro j e c t I d , ’’ ) ;

724 // Make sure the new controller is prepped for the migration.
725 _to . p r epFo rMig ra t i onOf ( _pro j e c t I d , t h i s ) ;

727 // Set the new controller.
728 d i r e c t o r y . s e t C o n t r o l l e r O f ( _pro j e c t I d , _to ) ;

730 emit Migrate ( _pro j e c t I d , _to , msg . sender ) ;
731 }

Listing 3.5: JBController :: migrate()

We emphasize that the privilege assignment with various protocol contracts is necessary and
required for proper protocol operations. However, it is worrisome if the owner is not governed by
a DAO-like structure. We point out that a compromised owner account would allow the attacker to
invoke the above migrate() to move funds out of the current protocol, which directly undermines the
assumption of the Juicebox protocol.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changed to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed and the team clarifies that a contract’s owner is not the
same as a project’s owner. This permission check makes sure only a project’s owner can migrate it’s
treasury..

3.5 Improper Token Removal Logic in changeFor()

• ID: PVE-005

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: JBTokenStore

• Category: Business Logic [7]

• CWE subcategory: CWE-841 [4]

Description

The Juicebox protocol has an essential JBTokenStore contract that manages token minting and burning
for all projects. This contract also supports the swap of a given project’s token for another, including
the removal of the project’s token. While reviewing the token removal logic, we notice the current
implementation needs to be improved.

17/22 PeckShield Audit Report #: 2022-055



Public

To elaborate, we show below the related changeFor() function. This function is proposed to swap
the current project’s token for another, and transfer ownership of the current token to another address
if needed. As mentioned earlier, it is also used to reset the project’s token if deemed appropriate for
removal. However, it comes to our attention that when the token is being removed, the new given
argument of _token will be set as 0, which will unfortunately revert the transaction execution (line
229)! In other words, the current functionality of removing a project’s token is broken.

209 function changeFor(
210 uint256 _projectId ,
211 IJBToken _token ,
212 address _newOwner
213 ) external override onlyController(_projectId) returns (IJBToken oldToken) {
214 // Can’t remove the project ’s token if the project requires claiming tokens.
215 if (_token == IJBToken(address (0)) && requireClaimFor[_projectId ])
216 revert CANT_REMOVE_TOKEN_IF_ITS_REQUIRED ();

218 // Can’t add a token that doesn’t use 18 decimals.
219 if (_token.decimals () != 18) revert TOKENS_MUST_HAVE_18_DECIMALS ();

221 // Get a reference to the current token for the project.
222 oldToken = tokenOf[_projectId ];

224 // Store the new token.
225 tokenOf[_projectId] = _token;

227 // If there’s a current token and a new owner was provided , transfer ownership of
the old token to the new owner.

228 if (_newOwner != address (0) && oldToken != IJBToken(address (0)))
229 oldToken.transferOwnership(_newOwner);

231 emit Change(_projectId , _token , oldToken , _newOwner , msg.sender);
232 }

Listing 3.6: JBTokenStore::changeFor()

Recommendation Revisit the above logic to properly support the token removal design. An
example revision is shown as follows:

209 function changeFor(
210 uint256 _projectId ,
211 IJBToken _token ,
212 address _newOwner
213 ) external override onlyController(_projectId) returns (IJBToken oldToken) {
214 // Can’t remove the project ’s token if the project requires claiming tokens.
215 if (_token == IJBToken(address (0)) && requireClaimFor[_projectId ])
216 revert CANT_REMOVE_TOKEN_IF_ITS_REQUIRED ();

218 // Can’t change to a token already in use.
219 if (projectOf[_token] != 0) revert TOKEN_ALREADY_IN_USE ();

221 // Can’t change to a token that doesn’t use 18 decimals.

18/22 PeckShield Audit Report #: 2022-055



Public

222 if (_token != IJBToken(address (0)) && _token.decimals () != 18)
223 revert TOKENS_MUST_HAVE_18_DECIMALS ();

225 // Get a reference to the current token for the project.
226 oldToken = tokenOf[_projectId ];

228 // Store the new token.
229 tokenOf[_projectId] = _token;

231 // Store the project for the new token if the new token isn’t the zero address.
232 if (_token != IJBToken(address (0))) projectOf[_token] = _projectId;

234 // Reset the project for the old token if it isn’t the zero address.
235 if (oldToken != IJBToken(address (0))) projectOf[oldToken] = 0;

237 // If there’s a current token and a new owner was provided , transfer ownership of
the old token to the new owner.

238 if (_newOwner != address (0) && oldToken != IJBToken(address (0)))
239 oldToken.transferOwnership(_newOwner);

241 emit Change(_projectId , _token , oldToken , _newOwner , msg.sender);
242 }

Listing 3.7: JBTokenStore::changeFor()

Status This issue has been fixed in the following commit: 63afb1e.

19/22 PeckShield Audit Report #: 2022-055

https://github.com/jbx-protocol/juice-contracts-v2/commit/63afb1e


Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the Juicebox protocol, which is a
programmable treasury, which can be used by DeFi projects to to configure how its tokens should be
minted when it receives money, and under what conditions funds can be distributed to preprogrammed
addresses or claimed by its community. The current code base is well structured and neatly organized.
Those identified issues are promptly confirmed and addressed.

Meanwhile, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

20/22 PeckShield Audit Report #: 2022-055



Public

References

[1] MITRE. CWE-1041: Use of Redundant Code. https://cwe.mitre.org/data/definitions/1041.

html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-663: Use of a Non-reentrant Function in a Concurrent Context. https://cwe.

mitre.org/data/definitions/663.html.

[4] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[5] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[6] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[7] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

[8] MITRE. CWE CATEGORY: Concurrency. https://cwe.mitre.org/data/definitions/557.html.

[9] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

21/22 PeckShield Audit Report #: 2022-055

https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/1041.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/663.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/557.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html


Public

[10] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[11] PeckShield. PeckShield Inc. https://www.peckshield.com.

[12] PeckShield. Uniswap/Lendf.Me Hacks: Root Cause and Loss Analysis. https://medium.com/

@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09.

[13] David Siegel. Understanding The DAO Attack. https://www.coindesk.com/

understanding-dao-hack-journalists.

22/22 PeckShield Audit Report #: 2022-055

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://medium.com/@peckshield/uniswap-lendf-me-hacks-root-cause-and-loss-analysis-50f3263dcc09
https://www.coindesk.com/understanding-dao-hack-journalists
https://www.coindesk.com/understanding-dao-hack-journalists

	Introduction
	About Juicebox
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Authorization Consistency in Terminal Management
	Improved Validation of JBSplitsStore::set()
	Improved Reentrancy Protection in JBETHPaymentTerminal
	Trust Issue of Admin Keys
	Improper Token Removal Logic in changeFor()

	Conclusion
	References

